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Finding the symmetries of a given fractional differential equation is a hot topic in the field of fractional differentiation and its 
applications. In this manuscript, the Lie symmetries of the time fractional gas dynamics (TFGD) equation are analyzed and 
new exact solutions are obtained. 
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1. Introduction 
 

The fractional calculus represents a generalization of 

the classical one and it started to become very popular in 

several branches of science and engineering. We recall 

that in acoustics, electro-chemistry, electromagnetics, 

control processing, anomalous diffusion and visco-

elasticity some phenomena are better described by using 

the fractional differential equations [1, 2, 3, 4, 5, 6, 7, 8]. 

As it is known the conservation laws play a very 

important role in physics and engineering from both 

theoretical and practical viewpoints. We recall that the 

laws of conservation of energy, angular momentum and 

linear momentum play key roles in solving many problems 

appearing in mathematical physics. Special analytical 

solutions for both ordinary differential equations (ODEs) 

and partial differential equations (PDEs) can be extracted 

using a systematic process, namely, Lie groups [9, 10, 11, 

12, 13]. This method requires the calculation of variable 

transformations which leave a differential equation form 

invariant. Lie symmetries were introduced in order to 

solve ordinary differential equations. We recall that by 

using the symmetry method we can reduce the systems of 

differential equations and we can find the equivalent 

systems of differential equations of simpler form 

(reduction process). Also symmetry groups can be used for 

classifying different symmetry classes of solutions. 

According to Nöether’s theorem, every continuous 

symmetry of a physical system corresponds to a 

conservation law of the system. Even though Lie 

symmetry method has been extensively applied to find the 

exact solutions of a range of classical PDEs and ODEs, it 

was applied for few fractional differential equations. Thus, 

an important task in the fractional calculus area is to find 

the Lie symmetries and the exact solutions for the 

fractional differential equations. We recall that the 

fractional derivatives are nonlocal operators, therefore 

there exists a huge motivation to find the symmetries of 

some equations, e.g. the time fractional gas dynamics, 

corresponding to the real world phenomena. Moreover, the 

fractional order models, in some cases, they gave better 

results than the integer order models, therefore this is 

another motivation to find the symmetries of the fractional 

gas dynamics equation. Motivated by the importance of 

the studied equation and taking into account that the 

fractional generalization were generalized recently only 

for the time fractional derivative, we consider the 

following equation [14, 15]: 
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      (1) 

 

where uDu tt

 :=  stands for Riemann-Liouville 

derivative of order   which the range of applicability of 

the Riemann-Liouville is more general than Caputo 

derivative. We recall that the Riemann-Liouville 

derivative is defined by [1, 2, 3, 4]  
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where )(z  is the Euler Gamma function and 

),(= txuu  is a function of the spatial coordinate x  and 

time t . When 1= , the TFGD equation reduces to the 

classical gas dynamics equation which is considered as a 

case study for solving hyperbolic conservation laws 

because it depicts the next level of complexity after the 

Burger’s equation. 
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The organization of the manuscript is given below: 

In Section 2 we present the point symmetries of the 

time fractional partial differential equations of first order. 

The description of the Lie symmetry analysis of the 

equation (1) is shown in Section 3. Also, the general 

similarity forms and the symmetry reductions are 

established. In Section 4 the exact solutions of the TFGD 

equation are investigated. The conclusion part ends our 

manuscript. 

  

 

2. Point symmetries of the fractional partial  
     differential equations 
 

We consider the fractional partial differential 

equations (FPDE) as [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 

26, 27, 28, 29]:  
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The infinitesimal generator V for Eq. (3) is written in 

the following form:  
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which satisfies the symmetry condition:  
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 The prolongation operator VPr ,1)(
 takes the form  
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and the operator


tD denotes the total fractional derivative 

operator. By using the invariance condition and the 

conservative property of Riemann-Liouville fractional 

operator we have  
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Making use of the fractional Leibnitz rule, we can 

rewrite 
0

  as following  
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From the chain rule [30]  
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and setting 1,=)(tf  we get  
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where  
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Hence  
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3. Lie theory for TFGD equation 
 

 According to the Lie symmetries and utilizing the 

prolongation VPr ,1)(
 to the Eq. (1), it is possible to get 

the following invariance criterion:  
 

0.=20 uuu x

x               (12) 

 

Using (8) and (12), one can obtain the determining 

equations for the symmetry group of Eq. (1) and solution 

of these equations concludes the symmetries:  
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given in the vector forms:  
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For the symmetry of 2V , the corresponding similarity 

variables are:  

 ).(=),(,= 2   Fttxuxt                (15) 
 

Now, by using the transformations (15), we reduce the 

TFGD (1) into a fractional ordinary differential equation 

(FODE) as it can be seen from the following theorem:  

Theorem 3.1: The transformation (15) reduces TFGD 

equation to the following nonlinear fractional ordinary 

differential equation:  
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with the Erdélyi-Kober fractional differential operator 
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is the Erdélyi-Kober fractional integral operator.  

Proof: From definition of the Riemann-Liouville 

fractional derivative we have  
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Setting 
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v = , one can get dv
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therefore (19) can be written as  
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Taking into account the relation )=( 2 xt , we 

conclude  
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As a result, we have  
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which completes the proof.  

 

 

4. Some exact solutions of TFGD equation 
 
 In this section, we introduce a transformation to 

reduce the TFGD equation into a nonlinear ODE. Then 
using the reduced equation we extract some exact 
solutions of TFGD equation of traveling wave types and 
transformation  
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where   and   are constants, allows us to reduce the Eq. 

(1) into a first order ODE as follows:  
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This equation is nonlinear and it is not possible to find 

a general solution for arbitrary parameters   and  . 

Therefore, to find the exact solutions of Eq. (24), we 

consider some special cases: 
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In this case an explicit solution of Eq. (24) can be 

derive as:  
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or equivalently from (23) we conclude:  
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Now, we plot the  is integration constant. 1cwhere

for different time  probability density function 
for  onal Brownian motions fracti

various space values in Fig. 1 and various times in Fig. 2. 
It is . 11  cas  edhe parameters have been selectT

 increases for  obvious from Fig. 1 that 
and  increase. Reverse behaviour occurs for   and when 

other larger times.   From Fig. 2. the solution increases for 
different time values when fractional order decrease. 
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Fig. 1. Profile of solution (26) with different values of fractional differential order at (a) x=5, (b) x=0 and (c) x=-5 

         

 
Fig. 2. Profile of solution (26) with different values of fractional differential order at (a) t=5, (b) t=10 and (c) t=20. 
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In this case, another explicit solution is as following:  
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In this case the exact solution of Eq. (24) is expressed 

as  
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   2=  : 

Here, a solution of the form:  
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can be derived and (23) gives another solution of (1). 

Unlike the previous obtained solution, in Fig. 3. when   

increases the solution decreases for )2.1,0[t and 

reverse behaviour occur for larger time values. Finally, 

according to Fig. 4. the solution increases when fractional 

order increases.  

 

      

    
Fig. 3. Profile of solution (31) with different values of fractional differential order at (a) x=-10, (b) x=-5 and (c) x=0 

               

 
Fig. 4. Profile of solution (31) with different values of fractional differential order at (a) t=2, (b) t=4 and (c) t=6. 
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5. Conclusion 

 

 The method of Lie symmetries is successfully 

applied to investigate the symmetry properties and 

similarity reductions of time fractional gas dynamics 

equation. We have demonstrated that Eq. (1) is reducible 

into a first order nonlinear ODE of fractional order with 

Erdélyi-Kober kind. Exact solutions of traveling wave 

types are extracted. 
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